लखनऊ शाखा पर UPPCS जीएस फाउंडेशन का पहला बैच 4 दिसंबर से शुरूCall Us
ध्यान दें:

डेली अपडेट्स

विज्ञान एवं प्रौद्योगिकी

क्वासर P172 + 18

  • 10 Mar 2021
  • 7 min read

चर्चा में क्यों?

हाल ही में खगोलविदों की एक अंतर्राष्ट्रीय टीम ने यूरोपियन सदर्न ऑब्ज़र्वेटरी की सबसे बड़ी टेलीस्कोप (European Southern Observatory’s Very Large Telescope- ESO’s VLT) की मदद से रेडियो उत्सर्जन के सबसे दूर स्थित स्रोत रेडियो-लाउड क्वासर (Radio-Loud’ Quasar) की खोज की है।

प्रमुख बिंदु

क्वासर:

Quasar

  • क्वासर (Quasar), आकाशगंगा (Galaxy) का सबसे चमकदार पिंड होता है, जिससे रेडियो आवृत्ति पर धारा (Jet) का उत्सर्जन होता है।
  • क्वासर शब्द "क्वासी-स्टेलर रेडियो सोर्स" (Quasi-Stellar Radio Source) का संक्षिप्त रूप है।
    • क्वासर को पहली बार 1960 के दशक में खोजा गया था, जिसका अर्थ है तारों की तरह रेडियो तरंगों का उत्सर्जक। 
    • खगोलविदों ने बाद में पता लगाया कि अधिकांश क्वासर से रेडियो उत्सर्जन बहुत कम होता है फिर भी वर्तमान में इसे इसी नाम से जाना जाता है। क्वासर रेडियो तरंगों और दृश्य प्रकाश के अलावा पराबैंगनी, अवरक्त, एक्स-रे और गामा-किरणों का उत्सर्जन करते हैं।
  • अधिकांश क्वासर हमारे सौरमंडल से भी बड़े हैं। एक क्वासर की चौड़ाई लगभग 1 किलोपारसेक (Kiloparsec) तक होती है।
  • ये केवल आकाशगंगा में पाए जाते हैं, जिनमें विशालकाय ब्लैकहोल (Blackhole) होते हैं जो इन चमकने वाली डिस्क को ऊर्जा देते रहते हैं।
    • ब्लैकहोल्स अंतरिक्ष में उपस्थित ऐसे छिद्र हैं जहाँ गुरुत्व बल इतना अधिक होता है कि वहाँ से प्रकाश का पारगमन नहीं हो सकता।
  • अधिकांश सक्रिय आकाशगंगाओं के केंद्र में एक विशालकाय ब्लैकहोल होता है जो आसपास की वस्तुओं को अपनी ओर खींच लेता है।
  • क्वासर का निर्माण एक ब्लैकहोल के चारों ओर घुमावदार भाग से निकलने वाली सामग्रियों द्वारा उत्सर्जित ऊर्जा से होता है।
  • इनको बाद में  "रेडियो-लाउड" (Radio-Loud) और "रेडियो-क्विट" (Radio-Quiet) कक्षाओं में वर्गीकृत किया जाता है।
    • रेडियो-लाउड:
      • इनमें शक्तिशाली जेट होते हैं जो रेडियो-तरंगदैर्ध्य उत्सर्जन के प्रमुख स्रोत हैं।
      • ये क्वासर की कुल संख्या के लगभग 10% होते है।
    • रेडियो-क्विट:
      • इस प्रकार के क्वासर के पास शक्तिशाली जेट की कमी होती है जो रेडियो-लाउड की तुलना में अपेक्षाकृत कमज़ोर रेडियो उत्सर्जन करते हैं।
      • अधिकांश क्वासर (लगभग 90%) रेडियो-क्विट प्रकार के हैं।

हाल ही में खोजा गया क्वासर P 172+18:

  • तरंगदैर्ध्य उत्सर्जित करने वाले क्वासर को P172+18 नाम दिया गया है, जिसमें 6.8 की रेडशिफ्ट (Redshift) था।
    • क्वासर की रोशनी को पृथ्वी तक पहुँचने में 13 अरब साल लग गए।
  • वैज्ञानिकों के अनुसार, यह विशेष तरह का क्वासर है क्योंकि इसकी उत्पत्ति तब हुई थी जब ब्रह्मांड लगभग 78 करोड़ वर्ष पुराना था।
  • ब्लैकहोल के चारों ओर चमकता हुआ डिस्क हमारे सूर्य की तुलना में 30 करोड़ गुना अधिक विशाल है।
  • यह सबसे तेज़ गति वाले क्वासर में से एक है, जिसका अर्थ है कि यह आकाशगंगा से तेज़ी से वस्तुओं को जमा कर रहा है।
  • अब तक छह से अधिक रेडशिफ्ट वाले केवल 3 अन्य 'रेडियो-लाउड’ स्रोतों को खोजा जा चुका है और सबसे दूर वाले हिस्से में 6.18 का रेडशिफ्ट था।
    • रेडियो तरंगदैर्ध्य का रेडशिफ्ट जितना अधिक होता है, उतना ही उसका स्रोत दूर होता है।

निष्कर्ष:

  • इस क्वासर के केंद्र में ब्लैकहोल अपनी आकाशगंगा को आश्चर्यजनक दर पर खत्म कर रहा है।

महत्त्व:

  • इन 'रेडियो-लाउड' चमकने वाले पिंडों का विस्तृत अध्ययन खगोलविदों को यह समझने के लिये प्रेरित कर सकता है कि बिग बैंग के बाद से उनके कोर में विशालकाय ब्लैकहोल्स कैसे तेज़ी से बढ़ रहे हैं।
  • यह प्राचीन तारा प्रणालियों और खगोलीय पिंडों के विषय में भी सुराग दे सकता है।

ESO’s VLT के विषय में:

  • क्वासर P172+18 का निरीक्षण करने के लिये उपयोग किये जाने वाला वेरी लार्ज टेलीस्कोप अटाकामा रेगिस्तान (Atacama Desert) में स्थित परानल वेधशाला (Paranal Observatory) में है।
    • चार यूनिट वाले इस टेलीस्कोप में 8.2 मीटर (27 फीट) के दर्पण लगे हुए हैं।
    • इससे कोई भी ऐसी वस्तु जिसको आँखों से नहीं देख सकते हैं, की खोज की जा सकती है।
    • यूरोपियन सदर्न ऑब्ज़र्वेटरी के अनुसार, वेरी लार्ज टेलीस्कोप विश्व का सबसे उन्नत ऑप्टिकल टेलीस्कोप है।

रेडशिफ्ट

  • गुरुत्वाकर्षण रेडशिफ्ट तब होता है जब प्रकाश के कण (फोटॉन) एक ब्लैकहोल से गुज़रते हैं और प्रकाश की तरंगदैर्ध्य बाहर निकलती है। यह प्रकाश स्पेक्ट्रम के लाल हिस्से में तरंगदैर्ध्य को स्थानांतरित करता है।
  • तीव्र गुरुत्वाकर्षण से बचने के लिये प्रकाश के कणों (फोटॉनों) को ऊर्जा खर्च करनी होगी।
  • इन फोटॉनों को एक ही समय में प्रकाश की गति से निरंतर गति करनी चाहिये।
  • अतः फोटॉन गति धीमी होने पर ऊर्जा नहीं खोते हैं, लेकिन इसे दूसरे तरीकों से खर्च करना पड़ता है।
  • यह खर्च हुई ऊर्जा प्रकाश स्पेक्ट्रम के लाल छोर की ओर एक बदलाव के रूप में प्रकट होती है।

स्रोत: डाउन टू अर्थ

close
एसएमएस अलर्ट
Share Page
images-2
images-2