Master UPSC with Drishti's NCERT Course Learn More
This just in:

State PCS

Daily Updates



Rapid Fire

Chirality-Based Electronics

  • 16 Feb 2026
  • 2 min read

Source: TH 

A new study published in Nature has demonstrated a device that can separate electrons based on their chirality (handedness) without using powerful magnetic fields, marking progress towards low-power devices. 

  • Chirality in electrons: Similar to how the left and right hands are mirror images, electrons in topological semimetals possess left- or right-handed chirality. 
    • Chirality represents a specific quantum state of electrons moving inside a crystal lattice. 
    • Semimetals, or Metalloids, are brittle solids with a metallic appearance but nonmetal chemical properties. They are neither good electrical nor thermal conductors, yet they make excellent semiconductors and form amphoteric oxides. 
  • Problem in detection: Chiral electrons are mixed with ordinary (non-chiral) electrons. Earlier detection methods required strong magnetic fields or chemical doping, making large-scale application impractical. 
  • Role of Band Structure (Quantum Geometry): In crystals, electrons behave like waves constrained by band structure 
    • Unlike straight electron motion in copper wiring, palladium gallium (PdGa) crystal has a “twisted” band structure, causing electrons to drift sideways. The direction of drift depends on electron chirality. 
  • Device Mechanism: The team fabricated a three-armed device. By passing a current through it, the quantum geometry of PdGa acts as a valve, funnelling left-handed electrons into one arm and right-handed electrons into another, effectively demonstrating a chiral valve. 
  • Path to Applications: It could lead to low-power computing technologies and novel forms of magnetic memory devices.
Read More: Quantum Technology 
close
Share Page
images-2
images-2