हिंदी साहित्य: पेन ड्राइव कोर्स
This just in:

Science & Technology

Nanocomposite Coatings

  • 18 Mar 2020
  • 3 min read

Why in News

A group of scientists at the International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), an autonomous R&D center of the Department of Science & Technology (DST) have developed a process for size-selective deposition of nanocomposite coatings.

Key Points

  • Nanocomposite coatings are formed by mixing two or more dissimilar materials at nanoscale to improve the physical, chemical and physicochemical properties of the new materials.
  • The scientists have found that nickel tungsten-based coatings with infusion of particular sized Silicon Carbide (SiC) submicron particles using a pulsed electroplating can provide an excellent combination of wear and corrosion resistance.

Need for Nanocomposite Coatings:

  • Several aerospace, defence, automobile, space devices need to reduce friction, wear, and tear to enhance the life of components.
  • Lubricating these dynamic systems add to the cost, complexity, and weight of these systems.
  • The coating could help in reducing the friction of such devices.

Advantages of the Process

  • The nanocomposite coating demonstrated excellent tribological behavior (science and engineering of interacting surfaces in relative motion, which includes principles of friction, lubrication, and wear) compared to other wear-resistant coatings.
  • The coatings withstood 1000 hours of salt spray (corrosion) without degradation when compared to conventional wear-resistant coatings.
  • The process is highly economical without environmental constraints.

Electroplating

  • Electroplating or electrodeposition is a process that employs an electrical signal provided by an external power source to reduce cations of a desired metal in solution and produce a metallic coating.
  • It involves the metal parts to be immersed in an electrolyte bath solution.
  • In this case, it is typically prepared by dissolving crystals of Nickel (Ni) and Tungsten (W) salts in a mix of distilled water and other additives.
  • A Direct Current (DC) is passed through the solution, and the resulting reaction leaves a deposit of Ni-W alloy on the piece being plated.

Size-Selective Electrodeposition:

  • For size-selective electrodeposition, Pulse Current (PC) electrodeposition – intermittent application of current is used in place of conventional Direct Current (DC) deposition.

Source: PIB

SMS Alerts
 

Please login or register to view note list

close

Please login or register to list article as bookmarked

close
 

Please login or register to make your note

close

Please login or register to list article as progressed

close

Please login or register to list article as bookmarked

close