Online Courses (English)
This just in:

Science & Technology

Lightweight Carbon Foam

  • 16 May 2020
  • 3 min read

Why in News

Recently, scientists (including a recipient of the INSPIRE Faculty award) from the CSIR-Advanced Materials and Processes Research Institute (Bhopal) have developed the ‘lightweight carbon foam’ which has the potential to replace lead grid in lead-acid batteries.

Background

  • Currently, the large-scale energy-storage sector is dominated by Lithium-ion (Li-ion) batteries, because of their higher energy density and long cycle life.
    • Energy density is the amount of energy that can be stored in a given mass of a substance or system, i.e. a measure of storage of energy.
  • However, there are some concerns regarding Li-ion batteries, such as safety risk, limited resource supply, high cost, and lack of recycling infrastructure.
  • As a result, lead-acid batteries are still one of the most reliable, economical, and environmentally friendly options.
    • The Lead-acid battery is one of the oldest types of rechargeable batteries and was invented in 1859 by the French physicist Gaston Plante.
    • However, electrodes in the lead-acid batteries suffer from the problem of heavyweight, corrosion, poor thermal stability, and diffusion of electrolytes in one dimension, which ultimately affects the output power.
  • The above issues necessitated the development of an alternative battery system with lower environmental concerns, economic and higher energy density.
  • Thus, currently developed lightweight carbon foam can replace the lead-acid batteries as the foam is highly resistive to corrosion, has good electrical and thermal conductivity with high surface area.

Key Points

  • Properties:
    • The developed lightweight carbon foam has very less density and high porosity.
    • It also has a good mechanical strength and is insoluble in water.
  • Uses:
    • It can also be useful for heat sinks in power electronics, electromagnetic interference shielding in aerospace, hydrogen storage, electrodes for lead-acid batteries and water purification systems.
      • In the case of water purification systems it is cost-effective for the removal of arsenic, oil, and other metals from contaminated water.
  • Benefits:
    • These carbon foams are non-toxic, easy to fabricate and affordable.
    • The raw material for the fabrication of carbon foam is easily available and there is no requirement of any costly equipment for the fabrication of carbon foam and filtration.
    • Such materials can be safely used in remote areas where power supply is scarce.
  • Other Related Development:
    • Recently, a group of researchers (including a recipient of the INSPIRE Faculty Award) have also made significant achievements in developing nanomaterials based supercapacitors to achieve high energy density and power density of supercapacitors.

Source:PIB

SMS Alerts
 

Please login or register to view note list

close

Please login or register to list article as bookmarked

close
 

Please login or register to make your note

close

Please login or register to list article as progressed

close

Please login or register to list article as bookmarked

close