

Advancements in Magnetic Field Measurements

Source: PIB

Scientists at the <u>Raman Research Institute (RRI)</u> have developed a technique called **Raman-Driven Spin Noise Spectroscopy (RDSNS)** which can be incorporated into an **all-optical quantum magnetometer** to **improve magnetic field measurements.**


RDSNS (Raman-Driven Spin Noise Spectroscopy):

- About: RDSNS is an advanced all-optical technique for measuring magnetic fields using laser light and Rubidium atoms.
 - Atoms naturally exhibit tiny, random spin movements, known as spin noise.
 - When exposed to a magnetic field, the pattern of this noise changes.
 - By detecting these changes with laser light, researchers can measure the magnetic field without disturbing the atoms.
- Key Advantages:
 - It enables shield-free, compact/portable, and field-deployable magnetic sensing with a wide dynamic range and high sensitivity.
 - It remains effective even in **outdoor or noisy environments** and is **resistant to electrical and mechanical interference**.
- Applications: RDSNS is useful in medical imaging (MRI alternative), geological surveys (mineral detection), space exploration (planetary magnetic fields), and quantum research (atomic and spin studies).

Magnetometer:

- About: A magnetometer is a device used to measure the strength and direction of magnetic fields, commonly applied in medical imaging, navigation, and earth/space studies.
 - In ocean exploration, it helps detect shipwrecks, aircraft debris, and geological features on the seafloor.
- Working: The Earth's magnetic field is generated by molten iron and nickel in its outer core and varies by location.
 - Magnetometers detect this variation by recording magnetic readings (typically at 1 Hz).
 When encountering ferrous objects (like anchors, wreckage, or basalt), the device senses magnetic anomalies, sudden, unexpected changes in the field.
- Modern Magnetometers: Modern magnetometers such as Optically Pumped Atomic
 Magnetometers (OPAMs) and Spin-Exchange Relaxation-Free (SERF) use laser light and alkali atoms (e.g., Rubidium) to detect magnetic fields with high sensitivity.
 - However, they require costly magnetic shielding, function only in noise-free lab settings, and have a limited detection range.

Read More: Aditya-L1: Deployment of Magnetometer Boom in Sun's Orbit

