

Solar-based Desalination Technology

Source: TH

Why in News?

To address <u>freshwater scarcity</u> worldwide, <u>scientists from IIT Bombay</u> have developed the <u>Dual-Sided Superhydrophobic Laser-Induced Graphene (DSLIG) evaporator</u>, which overcomes several limitations of previous <u>desalination systems</u> and holds potential for large-scale applications.

What are the Key Facts About the DSLIG?

Features	Description
Solar and Electric Heating Integration	It utilises both solar and Joule heating
	(electric) to ensure efficient desalination,
	even during fluctuating sunlight conditions,
	ensuring consistent performance.
Superhydrophobic Surface	The evaporator's surface exhibits lotus leaf-
	like behavior, repelling water and
	preventing salt deposition, enhancing
	long-term efficiency.
Material Composition	Made from polyvinylidene fluoride
	(PVDF) and poly (ether sulfone) (PES)
	polymers, with PVDF
	contributing hydrophobicity and PES
	ensuring mechanical stability.

- Significance: DSLIG offers an environmentally sustainable alternative with its <u>low carbon</u>
 <u>footprint</u> and high efficiency, making it suitable for treating industrial wastewater and saltwater
 discharges.
 - This breakthrough aligns with global efforts to promote green technologies and reduce environmental impact.

Note

- PVDF: Tough plastic that is resistant to flame, electricity, and most chemicals.
- PES: It is an amorphous, transparent, pale amber high-performance thermoplastic and is the most temperature-resistant transparent thermoplastic resin available commercially.
- **Hydrophobicity:** It is a physical property in which **molecules and water repel each other**, and substances with hydrophobic molecules are called **hydrophobes**.

What is Desalination?

About: Desalination is the process of removing dissolved salts from seawater, and in some

cases, **from brackish waters** (slightly salty waters of inland seas), highly mineralized groundwaters (such as geothermal brines), and municipal wastewaters.

- This process makes these otherwise unusable waters suitable for human consumption, irrigation, industrial applications, and other purposes.
- Process:

Desalination Process	Key Characteristics
Thermal Desalination: Water is heated to	Energy-intensive process
evaporate into steam, leaving behind impurities,	Can treat water with high salt content
which then condenses back into liquid water.	Produces very high purity water
	Suitable for industrial applications
Membrane-based Desalination: Water passes	Common methods include Reverse
through a semipermeable membrane that	<u>Osmosis</u>
allows water molecules to pass through	Efficient than thermal desalination
while blocking salts and other dissolved	 Limited by membrane strength and salinity
solids.	of the water

Note: The <u>National Institute of Ocean Technology (NIOT)</u> has developed the world's **first Low Temperature Thermal Desalination (LTTD) plant** in Kavaratti, Lakshadweep.

There are five desalination plants in operation in the Lakshadweep islands.

UPSC Civil Services Examination Previous Year Question (PYQ)

- Q. Where was the first desalination plant in India to produce one lakh litres freshwater per day based on low temperature thermal desalination principle commissioned? (2008)
- (a) Kavaratti
- (b) Port Blair
- (c) Mangalore
- (d) Valsad

Ans: (a)

PDF Reference URL: https://www.drishtiias.com/printpdf/solar-based-desalination-technology