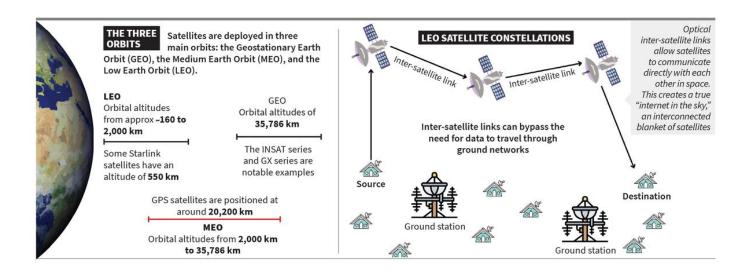


Satellite Internet


Source: TH

Why in News?

Starlink has received a **Unified Licence** to provide **satellite internet services** in India.

How Does Satellite Internet Work?

- About: Satellite internet uses orbiting satellites or mega-constellations- hundreds to thousands of satellites at varying altitudes to transmit data between user terminals on Earth and space-based infrastructure.
- Working Mechanism: Satellite internet operates through a two-segment system: the space segment and the ground segment.
 - Space Segment: It comprises satellites in different orbits equipped with communication payloads for data transmission.
 - Satellites receive data signals from user terminals or ground stations, process or relay them, and transmit them back to Earth.
 - LEO mega-constellations incorporate on-board signal processing and optical inter-satellite links, allowing direct satellite-to-satellite communication and reducing reliance on ground stations.
 - Ground Segment: It consists of user terminals (antennas, modems) and ground stations that communicate with the satellites.
 - Terminals send requests to satellites, which route the data through the constellation or ground infrastructure to reach the internet backbone.
- Orbital Deployment: Satellites are deployed in 3 main orbits:
 - Geostationary Earth Orbit (GEO): Lies around 35,786 km above the equator. A single GEO satellite covers nearly one-third of Earth's surface.
 - It has broad coverage, but high latency, so unsuitable for real-time applications. Example: Viasat Global Xpress.
 - Medium Earth Orbit (MEO): Lies at 2,000-35,786 km altitude. It has lower latency than GEO but requires constellations for global coverage. Example: O3b MEO.
 - Low Earth Orbit (LEO): Lies at less than 2,000 km altitude. Very low latency, smaller satellites, and rapid deployment, but smaller coverage per satellite.
 - LEO satellites form "mega-constellations" for global reach. Example: Starlink with over 7,000 satellites.

What are the Key Potential Applications of Satellite Internet?

- Connectivity & Communications: Provides internet in remote areas via compact user terminals.
 - Future direct-to-smartphone services aim to integrate connectivity into smart devices, enabling the Internet of Everything (IoE).
- Transport, Logistics & Public Services: Enhances navigation, supports autonomous vehicles, improves logistics, powers smart cities, provides early warning systems, and enables coordinated disaster response.
- Healthcare & Agriculture: Facilitates telemedicine and remote patient monitoring, and supports precision farming, crop health monitoring, and optimized resource use.
- Strategic, Industrial & Environmental Uses: Aids defence operations, environmental monitoring, energy exploration, and tourism, while its dual-use nature requires integration into national resilience plans, bridging the digital divide, and shaping international governance for strategic advantage.
- Disaster Response & Emergency Communication: It allows rapid deployment of connectivity in disaster-affected regions, supporting emergency management.
 - During <u>Hurricane</u> Harvey (2017), satellite internet enabled rescue operations when terrestrial networks failed.

Note:

- Starlink: A satellite internet constellation by SpaceX, providing high-speed, low-latency internet globally.
- Commercial satellite internet services are not yet operational in India.
 - Eutelsat OneWeb, Reliance Jio-SES, and Starlink have obtained necessary permits
 & government is finalizing spectrum allocation for its commercial rollout.

Key Satellite Internet Projects:

- Project Kuiper (Amazon): Plans to deploy over 3,200 advanced LEO satellites to provide affordable, high-speed broadband globally.
- Starlink (SpaceX): Launched in 2019, aims for a 42,000-satellite LEO mega-constellation.
- OneWeb (Eutelsat, France): Operates the world's second-largest satellite constellation after Starlink.
- Qianfan or G60 Starlink Constellation (China): Planned LEO mega-constellation by Shanghai Spacecom Satellite Technology (SSST) to provide global internet coverage.

UPSC Civil Services Examination, Previous Year Question (PYQ)

Prelims:

Q. For the measurement/estimation of which of the following are satellite images/remote sensing data used? (2019)

- 1. Chlorophyll content in the vegetation of a specific location
- 2. Greenhouse gas emissions from rice paddies of a specific location
- 3. Land surface temperatures of a specific location

Select the	correct answe	r using the	code aiven	ı below.

- (a) 1 only
- (b) 2 and 3 only
- (c) 3 only
- (d) 1, 2 and 3

Ans: (d)

Q. With reference to India's satellite launch vehicles, consider the following statements: (2018)

- 1. PSLVs launch the satellites useful for Earth resources monitoring whereas GSLVs are designed mainly to launch communication satellites.
- 2. Satellites launched by PSLV appear to remain permanently fixed in the same position in the sky, as viewed from a particular location on Earth.
- 3. GSLV Mk III is a four-staged launch vehicle with the first and third stages using solid rocket motors, and the second and fourth stages using liquid rocket engines.

Which of the statements given above is/are correct?

- (a) 1 only
- (b) 2 and 3
- (c) 1 and 2
- (d) 3 only

Ans: (a)

Q. With reference to Web 3-0, consider the following statements: (2022)

- 1. Web 3.0 technology enables people to control their own data.
- 2. In Web 3.0 world, there can be blockchain based social networks.
- 3. Web 3.0 is operated by users collectively rather than a corporation.

Which of the statements given above are correct?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only

(d) 1, 2 and 3

Ans: (d)

Mains

Q. Discuss India's achievements in the field of Space Science and Technology. How the application of this technology helped India in its socio-economic development? (2016)

Q. Has digital illiteracy, particularly in rural areas, coupled with lack of Information and Communication Technology(ICT) accessibility hindered socio-economic development? Examine with justification. (2021)

