

Solar Water Desalination

Why in News?

Indian Institutes of Technology (IIT)- Bombay scientists have developed a new material

to enable water desalination and address global freshwater scarcity.

Key Points

- About the Innovation:
 - Researchers have developed a Dual-Sided Superhydrophobic Laser-Induced Graphene (DSLIG) evaporator.
 - The DSLIG addresses limitations of traditional evaporators and shows promise for large-scale desalination and wastewater treatment.
 - The Freshwater Challenge:
 - Only 3% of Earth's water is freshwater, and less than 0.05% is easily accessible.
 - Desalination of seawater and brackish water is a key solution to this scarcity.
 - However, desalination produces brine, a concentrated salt byproduct, which poses disposal challenges, especially in landlocked areas.
 - Industries now aim for zero liquid discharge systems to avoid environmental harm.
- Solar Desalination:
 - Solar energy-based desalination offers a low-carbon solution.
 - Yet, sunlight variability and poor light absorption reduce efficiency.
 - Interfacial evaporation systems help by heating a thin surface layer of water instead of the whole volume, enhancing efficiency.
 - Challenges in Interfacial Evaporation:
 - Cloud cover and fluctuating solar intensity hamper consistent performance.
 - Evaporation peaks around 2 pm, when solar radiation is highest.
 - Salt deposition on the evaporator surface blocks water contact, reducing long-term efficiency.
 - DSLIG Overcomes the Challenges:
 - DSLIG allows **dual heating—solar and Joule heating (electric)**—ensuring performance even in low sunlight.

• **Superhydrophobic properties (lotus effect)** prevent salt from sticking to the evaporator surface.

Fabrication of DSLIG:

- Researchers coated <u>PVDF (polyvinylidene fluoride)</u> on one side of PES (polyether sulfone) polymer.
 - PDVF are **polymers** that can generate electric charges on the surface under pressure/strain thus **converting mechanical energy into electrical energy.**
 - PES is a thermoplastic polymer known for its high **thermal stability**, **excellent chemical resistance**, **and biocompatibility**.
- They used laser engraving to inscribe graphene onto the PVDF layer.
 - PES ensures mechanical strength, while PVDF contributes to dual-sided water repellency.
- The result is a durable, superhydrophobic surface effective in both electric and solar modes.
- Applications:
 - It is suitable for **treating industrial wastewater and brine** from desalination plants.
 - Researchers observed improved performance by stacking multiple evaporators.
 - DSLIG is low-cost, non-toxic, and sustainable, making it ideal for large-scale applications.

- A **desalination plant** turns salt water into water that is fit to drink.
 - **Desalination** is the process of **removing salts from water** to produce water that meets the quality (salinity) requirements of different human uses.
- The most commonly used technology for the process is reverse osmosis.
 - An external pressure is applied to push solvents from an area of high-solute concentration to an area of low-solute concentration through a semi-permeable membrane.
 - The **microscopic pores** in the membranes allow water molecules through but leave salt and most other impurities behind, releasing clean water from the other side.
- These plants are mostly set up in areas that have access to sea water.

