

Lack of Access to Antibiotics Against CRGN

Source: TH

Why in News?

A study published in *The Lancet Infectious Diseases* reveals that only **7.8% of patients in India with carbapenem-resistant Gram-negative (CRGN)** infections received the appropriate <u>antibiotic</u> treatment, highlighting a severe lack of access to effective **treatments for multidrug-resistant infections**.

What are the Key Findings of the Study Regarding Antibiotic Access?

- Limited Access to Appropriate Antibiotics: A study of nearly 1.5 million CRGN infection cases across eight <u>low- and middle-income countries (LMICs)</u>, including India, reveals that in 2019, out of nearly 10 lakh CRGN infections in India, fewer than 1 lakh patients received appropriate antibiotics.
 - Only 7.8% of patients in India received the correct treatment, slightly above the 6.9% average across the eight studied LMICs (Bangladesh, Brazil, Egypt, India, Kenya, Mexico, Pakistan, and South Africa). The lack of proper treatment resulted in an estimated 3.5 lakh deaths.
- Barriers to Effective Treatment: The study identified several barriers, including insufficient diagnostic testing, lack of standardised treatment protocols, and issues with antibiotic supply and affordability.
- **Recommendations:** The study calls for a two-pronged approach: preserving antibiotics through responsible use and **ensuring access for those in need.**
 - It calls for strengthening antibiotic stewardship programs and regulatory frameworks.
 - It advocated for bridging the access gap to ensure that all patients receive the correct treatment.

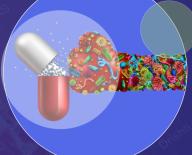
What is the Carbapenem-Resistant Gram-Negative (CRGN)?

- Definition: CRGN refers to a group of bacteria that are resistant to carbapenem antibiotics, which are typically used as a last line of defense against multi-drug resistant infections.
 - These bacteria are classified as Gram-negative, meaning they do not retain the crystal violet dye during the Gram staining procedure, which is used to classify bacteria based on their cell wall structure.
 - Examples of CRGN infections include those caused by **Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa.**
- Mechanisms of Resistance: The resistance occurs because these bacteria have developed mechanisms to break down or evade carbapenem antibiotics, often through the production of enzymes called carbapenemases.
- **CRGN Infections:** CRGN infections can cause serious conditions such as pneumonia, bloodstream infections, and urinary tract infections.
 - These infections are challenging to treat due to the resistance to antibiotics.

- Public Health Threat: CRGN infections are difficult to treat and are associated with high morbidity and mortality rates.
 - The lack of effective antibiotics to treat these infections can lead to prolonged hospital stays, increased healthcare costs, and higher death rates.

Gram Staining

- Bacteria: These are unicellular microorganisms classified as prokaryotes, lacking a true nucleus. They have a simple structure, including a cell wall, capsule, deoxyribonucleic acid, pili, flagellum, cytoplasm, and ribosomes.
 - Bacteria can be classified as gram-positive or gram-negative based on their cell wall composition.
- **Gram Staining:** The Gram stain procedure distinguishes between **Gram positive and Gram negative** groups by coloring these cells red or violet.
 - Gram-positive bacteria stain violet due to their thick cell wall, which retains the crystal violet stain.
 - In contrast, **Gram-negative bacteria stain red** because their thinner wall allows the crystal violet to wash out during decoloring.



ANTIMICROBIAL

RESISTANCE

The ability of microorganisms to resist the effects of antimicrobial drugs

CAUSES OF **AMR**

- Poor infection control/sanitation
- Antibiotic overuse
- Genetic mutations of microbe
- Lack of investment in R&D of new antimicrobial drugs

Microbes that develop AMR are called 'Superbugs'

IMPACTS OF AMR

- ↑ Risk of spreading infections
- Makes infections harder to treat; prolonged illness
- † Healthcare costs

EXAMPLE

- Carbapenem antibiotics stop responding due to AMR in K. pneumoniae
- AMR Mycobacterium tuberculosis causing
 Rifampicin-Resistant TB (RR-TB)
- Drug-resistant HIV (HIVDR) making antiretroviral (ARV) drugs ineffective

RECOGNITION BY WHO

- Identified AMR as one of the top 10 threats to global health
- Launched GLASS (Global Antimicrobial Resistanceand Use Surveillance System) in 2015

INDIA'S INITIATIVES AGAINST AMR

- Surveillance of AMR in microbes causing TB,
 Vector Borne diseases, AIDS etc.
- National Action Plan on AMR (2017) with One
 Health approach
- Antibiotic Stewardship Program by ICMR

New Delhi metallo- β -lactamase-1 (NDM-1) is a bacterial enzyme, emerged from India, that renders all current β -lactam antibiotics inactive

UPSC Civil Services Examination, Previous Year Questions (PYQ)

Prelims

Q. Which of the following are the reasons for the occurrence of multi-drug resistance in microbial pathogens in India? (2019)

- 1. Genetic predisposition of some people
- 2. Taking incorrect doses of antibiotics to cure diseases
- 3. Using antibiotics in livestock farming
- 4. Multiple chronic diseases in some people

Select the correct answer using the code given below.

- (a) 1 and 2
- **(b)** 2 and 3 only
- (c) 1, 3 and 4
- (d) 2, 3 and 4

Ans: (b)

Mains

Q. Can overuse and free availability of antibiotics without Doctor's prescription, be contributors to the emergence of drug-resistant diseasesin India? What are the available mechanisms for monitoring and control? Critically discuss the various issues involved. **(2014)**

PDF Refernece URL: https://www.drishtiias.com/printpdf/lack-of-access-to-antibiotics-against-crgn

