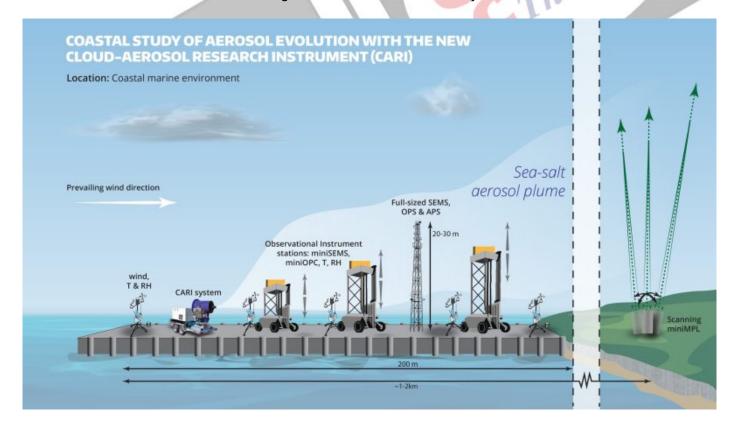


# **Marine Cloud Brightening**

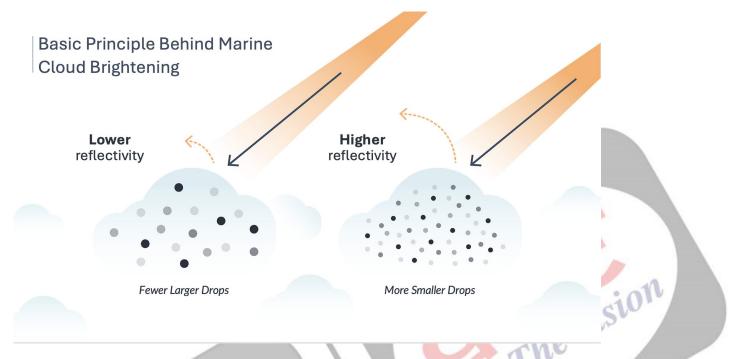
For Prelims: Marine cloud brightening, Coral bleaching, Global warming, Great Barrier Reef, Intergovernmental Panel on Climate Change.


**For Mains:** Mechanism of Marine Cloud Brightening and Related Challenges and Risks, Environmental Pollution & Degradation, Conservation

#### **Source: ST**

### Why in News?

Recently, scientists are testing a geoengineering technique called marine cloud brightening.


 This method involves using machines to inject tiny saltwater particles into marine stratocumulus clouds, aiming to increase their reflectivity and cool the Earth.



# What is Marine Cloud Brightening?

About:

- Marine cloud brightening is a scientific initiative that explores how altering atmospheric particles (aerosols) can impact cloud reflectivity.
- By releasing tiny <u>aerosol particles</u> into the atmosphere, researchers aim to enhance cloud brightness, leading to **increased sunlight reflection**.
- Aerosols of the right size and concentration could significantly increase the reflectivity of specific types of clouds.
- This phenomenon is visible in satellite images of clouds brightened by **ship emissions** (known as "ship tracks").



#### Goals of the Marine Cloud Brightening Program:

- Better understanding of the present-day effects of pollution aerosols on clouds.
- Investigate whether aerosol particles made from sea salt could be used to intentionally reduce near-term climate warming while <u>greenhouse gas</u> concentrations are brought down to safer levels.
- Understand the benefits, risks, and efficacy of the intentional use of aerosols to reduce warming through different implementations of marine cloud brightening.

#### **Aerosol and Climate Effect:**

- Aerosol concentration is declining due to expanding <u>air quality regulations</u>, leading to fewer particles in the atmosphere.
- Most aerosol particles have a cooling effect on climate, so their reduction adds to global warming.
- Scientists estimate that aerosols from human emissions are offsetting 0.5°C of global warming, but the **actual cooling effect** could range from 0.2°C to 1.0°C.
- Uncertainty about aerosol effects on clouds contributes to uncertainty in future warming projections.

# What are the Challenges and Risks Associated with MCB?

- **Technical Feasibility:** MCB involves the **large-scale spraying of seawater** into the atmosphere at significant altitudes, which presents **engineering complexities** in terms of design, cost, maintenance, and operation of the spraying devices.
- Environmental Impacts: Alterations in cloud patterns and precipitation due to MCB could affect regional climate and hydrological cycles, potentially causing unintended consequences like

#### droughts or floods.

- Changes in clouds over broad regions affect the circulation of the atmosphere, weather, and precipitation.
- Both marine cloud brightening (MCB) and pollution aerosols can change clouds, which in turn affects regions both nearby and far from where the brightening occurs.
- **Ethical Issues:** MCB raises **ethical dilemmas** about human intervention in natural processes and the governance and decision-making processes surrounding its implementation.
- Moral Hazard: MCB might lead to complacency among policymakers and the public, diminishing their commitment to reducing greenhouse gas emissions and adapting to climate change.

# GEO-ENGINEERING



Geoengineering means manipulating the earth's climate to lower its temperature to counter global warming

#### **TYPES OF GEO-ENGINEERING**

|                                                    | CARBON DIOXIDE REMOVAL                                         |                                         |                                                                    |  |
|----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|--|
| Technology/<br>Method Proposed                     | Proposed<br>Effects/actions                                    | Potential<br>Side Effects               | Feasibility/Cost<br>Effectiveness                                  |  |
| Land Use<br>Management                             | Afforestation/<br>Reforestation                                | Minimum<br>Side Effects                 | High feasibility,<br>Low Cost                                      |  |
| Bio-energy with carbon capture and storage (BECCS) | Biomass harvested<br>and used as fuel                          | Potential land<br>use conflict          | Comparatively expensive                                            |  |
| Direct CO <sub>2</sub><br>Capture                  | Industrial<br>Process                                          | Minimal                                 | High technical feasibility                                         |  |
| Fertilization of the ocean                         | Increased CO <sub>2</sub> absorption by promoting algae growth | High potential for adverse side effects | Feasible but not cost-effective                                    |  |
| Accelerated<br>Weathering                          | Pulverization of silicate rocks                                | Potential respiratory<br>health impact  | Could be combined with crop production, a feasible option at scale |  |

#### **SOLAR RADIATION MANAGEMENT**

| Stratospheric<br>aerosol Injection | For reflecting sunlight back into space                                           | Likely impact on<br>the hydrological cycle | Feasible and potentially highly effective |
|------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|
| Marine cloud<br>brightening        | Seeding of marine clouds with seawater aerosol                                    | Likely impact on precipitation pattern     | Low to medium cost and feasible at scale  |
| Giant deflectors<br>in outer space | Mirror placed in<br>near earth orbit                                              | Regional climate effects                   | Capital-intensive and long gestation      |
| Surface albedo<br>approaches       | Painting the roof of the<br>building bright white,<br>Installing desert reflector | Major Impact on<br>Desert Ecosystem        | High labor and maintenance cost           |

#### REGULATION

No specific international or Indian regulations on geoengineering.

#### **INDIA'S EFFORTS**

- Department of Science and Technology:
  - Geoengineering climate-modelling research programme (since 2013)

#### ) IISc:

- Initiative to understand the implications of solar geoengineering for developing countries
- Scientists simulated injecting 20 million tonnes of sulphate aerosols into the Arctic stratosphere



#### **Conclusion:**

- Marine Cloud Brightening (MCB), a cutting-edge climate intervention, remains in its early research and development stages. Scientists are diligently exploring its feasibility, efficacy, and potential impacts.
- Sustainable human adaptation is considered the sole novel approach among various geoengineering methods to mitigate global warming and address climate change, with acknowledgment of associated risks and uncertainties

#### **Drishti Mains Question:**

Q. Discuss the various geoengineering techniques proposed to mitigate climate change and their potential impacts on global climate systems. How does sustainable human adaptation stand out as a unique approach in this context?

## **UPSC Civil Services Examination, Previous Year Question (PYQ)**

#### **Prelims**

- Q. In the context of which of the following do some scientists suggest the use of cirrus cloud thinning technique and the injection of sulphate aerosol into stratosphere? (2019)
- (a) Creating the artificial rains in some regions
- **(b)** Reducing the frequency and intensity of tropical cyclones
- (c) Reducing the adverse effects of solar wind on the Earth
- (d) Reducing the global warming

Ans: (d)

- Q. Consider the following statements: (2012) Chlorofluorocarbons, known as ozone-depleting substances, are used
  - 1. in the production of plastic foams
  - 2. in the production of tubeless tyres
  - 3. in cleaning certain electronic components
  - 4. as pressurizing agents in aerosol cans

#### Which of the statements given above is/are correct?

- (a) 1, 2 and 3 only
- **(b)** 4 only
- (c) 1, 3 and 4 only
- (d) 1, 2, 3 and 4

Ans: (c)

#### **Mains:**

**Q.** Bring out the relationship between the shrinking Himalayan glaciers and the symptoms of climate change in the Indian subcontinent. **(2014)** 

