

China's High Energy Photon Source

Source: TOI

Why in News?

China is on the brink of a major scientific breakthrough with the construction of the **High Energy Photon Source (HEPS),** a state-of-the-art fourth-generation synchrotron light source.

■ This development places China among a select group of nations capable of producing some of the **brightest** X-rays in the world.

Note:

- A synchrotron is a large circular machine the size of a football field that produces intense beams
 of light using high-energy electrons forced to travel in a circular orbit inside tunnels with
 strong magnetic fields.
 - The light is used to reveal the innermost secrets of materials, leading to advancements in medicine, agriculture, and materials science.

What is the HEPS Facility?

- About:
 - The High Energy Photon Source (HEPS) located approximately Huairou, this facility is
 designed to accelerate electrons up to energies of 6 giga electron volts within its
 1.36-kilometer circumference storage ring.
- Key Features of HEPS:
 - HEPS will produce high-energy X-rays that can penetrate deep into samples, revealing intricate details at the nanometer scale.
 - Technical Specifications:
 - **Electron Acceleration:** Up to 6 gigaelectron volts.
 - **Time Resolution**: 10,000 times better than third-generation synchrotrons, enabling measurements in nanoseconds.
 - Beamlines: 14 initially, with the capacity to expand up to 90.
 - Scientific Impact:
 - Nanometre-Scale Probing: Ability to study molecular and atomic structures in real time.
 - Can analyse minuscule samples, including small protein crystals that are challenging for older synchrotrons.
 - **Broad Applications:** Will benefit fields such as biomedicine, energy, advanced materials, and condensed-matter physics.
 - Faster Experimentation: Experiments that took days at older facilities can now be completed rapidly.
- Challenges:
 - Beam Stability: Ensuring the X-ray beam is stable enough for practical use requires

- meticulous, step-by-step adjustments.
- **Technical Precision:** The process of fine-tuning thousands of components is critical to maintaining the light's brightness and stability.

How does HEPS Compare to Other Synchrotrons?

- Current Status in China: HEPS will surpass the Shanghai Synchrotron Radiation Facility, China's most advanced existing synchrotron.
- Global Context: Joins the ranks of only a few fourth-generation synchrotron facilities worldwide, including:
 - MAX IV Laboratory (Lund, Sweden), Sirius (Campinas, Brazil), Extremely Brilliant Source (Grenoble, France), and Advanced Photon Source (Lemont, Illinois).
- Synchrotrons in India:
 - India has **two synchrotron radiation sources** at the Raja Ramanna Centre for Advanced Technology (RRCAT) in Indore.
 - Indus-1:
 - A 450 MeV source that has been operating since 1999 and emits in the soft x-ray and vacuum ultraviolet (VUV) regions.
 - Indus-2:
 - Indus-2 is an indigenously built third generation Synchrotron Radiation Source (SRS) with 2.5 GeV energy and 200 mA beam current, operating at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore.
 - It has a provision of 21 beamlines based on bending magnets and additional 5 beamlines based on insertion devices.

PDF Refernece URL: https://www.drishtiias.com/printpdf/china-s-high-energy-photon-source