

Earth's Ancient Magnetic Field

Source: TH

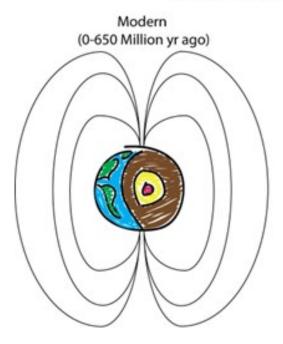
Why in News?

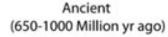
Recently, a study in the **Journal of Geophysical Research** by geologists at the Massachusetts Institute of Technology and Oxford University unveiled insights into **Earth's ancient** magnetic field, as revealed by ancient rocks, shedding light on its early geological evolution.

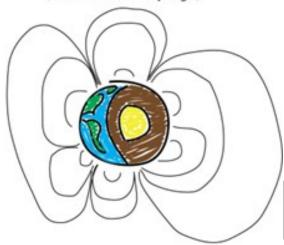
What are the Key Findings of the Study?

Strength of Magnetic Field:

- Geologists discovered ancient rocks in the Isua Supracrustal Belt in southwestern
 Greenland dating back approximately 3.7 billion years, bearing the oldest remnants of
 Earth's early magnetic field.
 - The rocks retain signatures of a magnetic field with a strength of at least 15 microtesla, similar in magnitude to Earth's magnetic field today (around 30 microtesla).


Magnetic Field's Lifetime:


- Previous studies suggested a magnetic field on Earth at least 3.5 billion years old, but this study extends its lifetime by another 200 million years.
- Using uranium-to-lead ratio analysis, researchers estimated that some of the magnetised minerals in the rocks were approximately 3.7 billion years old.


Potential Role in Earth's Habitability:

- The early magnetic field may have played a critical role in making the planet habitable.
 - It likely helped retain a **life-sustaining atmosphere** and shielded the planet from damaging solar radiation.

Evolution of Earth's Magnetic Field

Uranium-to-Lead Ratio Analysis

- Uranium-lead dating, or U-Pb dating, is a <u>radiometric dating technique</u> that uses the ratio of <u>uranium isotopes</u> to lead isotopes to determine the age of <u>earth materials</u>.
- The ratio of uranium to lead is used to determine the rate at which uranium decays into lead, which is then used to determine the age of a rock.

What is Earth's Magnetic Field?

About:

- Earth's magnetic field, also known as the **geomagnetic field**, is generated in the planet's interior and extends into space, creating a region called the **magnetosphere** and interacting with the solar wind.
- The magnetic field is generated by convection currents of molten iron and nickel in the Earth's core, which carry charged particles and generate magnetic fields.
- Not only Earth, but Jupiter, Saturn, Uranus, and Neptune also have strong magnetic fields, which are not fully understood.
 - Mars lacks the inner heat and liquid interior needed for a magnetic field, while Venus has a liquid core but spins too slowly to generate one.

Geodynamo Process:

- Earth's magnetic field is generated by the geodynamo process in the outer core.
 - The convective energy from the **slow-moving molten iron in the outer core** is converted to electrical and magnetic energy, inducing a positive feedback loop.

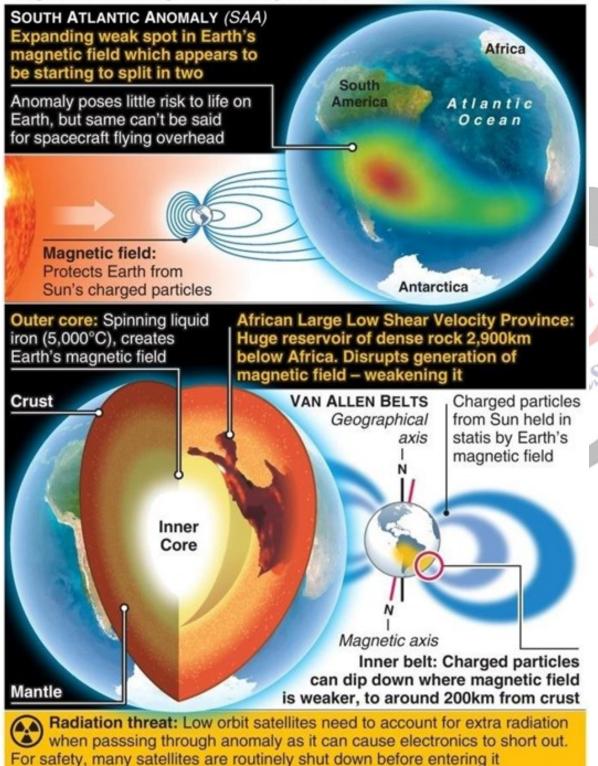
Magnetic poles:

- Earth has two sets of poles: the geographic poles and the magnetic poles.
 - The **geographic North and South poles** are the locations where the **lines of longitude converge**, with the Geographic North Pole situated in the middle of the Arctic Ocean and the Geographic South Pole located in Antarctica.
- In contrast, the magnetic poles are the locations where the magnetic field lines enter and exit the Earth's surface.
 - The Magnetic North Pole, also known as the **North Dip Pole**, is currently found on **Ellesmere Island in northern Canada.**
 - When a compass points north, it is aligning itself with the Earth's magnetic field and pointing towards the Magnetic North Pole, not the true Geographic

North Pole.

Protection from Space Weather:

- Earth's magnetosphere shields the planet from harmful space weather, such as <u>solar wind</u>, <u>coronal mass ejections (CMEs)</u>, and <u>cosmic rays</u>.
- The magnetosphere repels harmful energy away from Earth and traps it in zones called the Van Allen radiation belts.


Geomagnetic Storms and Auroras:

- During strong space weather events, Earth's magnetic field can be disturbed, leading to geomagnetic storms that can cause power blackouts and communication disruptions.
- Disturbances in Earth's magnetic field also funnel ions towards the polar regions, creating spectacular <u>auroras</u> (northern lights and southern lights).

The "dent" in Earth's magnetic field

NASA is monitoring a strange anomaly in Earth's magnetic field – a vast region of lower magnetic intensity in the skies above the South Atlantic

UPSC Civil Services Examination, Previous Year Questions (PYQs)

Prelims

Q. If a major solar storm (solar flare) reaches the Earth, which of the following are the possible effects on the Earth?

- 1. GPS and navigation systems could fail.
- 2. Tsunamis could occur at equatorial regions.
- 3. Power grids could be damaged.
- 4. Intense auroras could occur over much of the Earth.
- 5. Forest fires could take place over much of the planet.
- 6. Orbits of the satellites could be disturbed.
- 7. Shortwave radio communication of the aircraft flying over polar regions could be interrupted.

Select the correct answer using the code given below:

(a) 1, 2, 4 and 5 only

(b) 2, 3, 5, 6 and 7 only

(c) 1, 3, 4, 6 and 7 only

(d) 1, 2, 3, 4, 5, 6 and 7

Ans: (c)

PDF Refernece URL: https://www.drishtiias.com/printpdf/earth-s-ancient-magnetic-field