Climate Change & Infectious Diseases

Why in News

According to a recent study published in the journal **'Science of the Total Environment'**, scientists have found that climate change parameters accounted for 9-18% of the total infectious disease cases.

 Climate change driven by anthropogenic activities may challenge the gains in public health over the past many years, particularly in a country like India that ranks high in the list of climatevulnerable countries in the world.

Key Points

- Highlights of the Report:
 - **Vulnerability of Children**: Globally, it is estimated that children are to bear most of the burden of disease due to climate change, with the poorest disproportionately affected.
 - The higher risk associated with children is due to the combination of physiological vulnerability as well as the risk of exposure.
 - **Affecting Factors:** Climate parameters like temperature, humidity, rainfall, solar radiation, and wind speed were significantly associated with the infectious diseases--gastrointestinal diseases, respiratory diseases, vector-borne diseases, and skin diseases.
 - **Impact**: Socio-economic conditions and child anthropometry (study of the measurements and proportions of the human body) modified the climate-disease association with a high proportion of children found suffering from stunting, wasting, and underweight conditions.
- Example of Climate Change and Infectious Diseases Linkage:
 - Malaria is of great public health concern, and seems likely to be the vector-borne disease most sensitive to long-term climate change.
 - Malaria varies seasonally in highly endemic areas. The link between malaria and extreme climatic events has long been studied in India, for example.
 - Early last century, the river-irrigated Punjab region experienced periodic malaria epidemics.
 - Excessive monsoon rainfall and high humidity was identified early on as a major influence, enhancing mosquito breeding and survival.
 - Recent analyses have shown that the malaria epidemic risk increases around fivefold in the year after an El Niño event.

Environmental changes	Example diseases	Pathway of effect
Dams, canals, irrigation	Schistosomiasis	🔺 Snail host habitat, human contact
	Malaria	 Breeding sites for mosquitoes
	Helminthiasies	 Larval contact due to moist soil
	River blindness	 Blackfly breeding,
Agricultural intensification	Malaria	Crop insecticides and A vector resistance
	Venezuelan haemorraghic fever	 rodent abundance, contact
Urbanization, urban crowding	Cholera	 sanitation, hygiene; vater contamination
	Dengue	Water-collecting trash, ^ <i>Aed</i> es aegypti mosquito breeding sites
	Cutaneous leishmaniasis	s
Deforestation and new habitation	Malaria	 Breeding sites and vectors, immigration of susceptible people
	Oropouche	 contact, breeding of vectors
	Visceral leishmaniasis	contact with sandfly vectors
Reforestation	Lyme disease	 tick hosts, outdoor exposure
Ocean warming	Red tide	Toxic algal blooms
Elevated precipitation	Rift valley fever	 Pools for mosquito breeding
	Hantavirus pulmonary syndrome	 Rodent food, habitat, abundance
		increase

Way Forward

- Changes in infectious disease transmission patterns are a likely major consequence of climate change. Thus, there is a need to learn more about the underlying complex causal relationships, and apply this information to the prediction of future impacts, using more complete, better validated, integrated, models.
- Government and policymakers need to prioritize effective measures for child health as the present association may increase disease burden in the future under climate-change scenarios in an already malnourished pediatric population through multiple pathways.

Source: PIB

PDF Refernece URL: https://www.drishtiias.com/printpdf/climate-change-infectious-diseases