Aquaponics

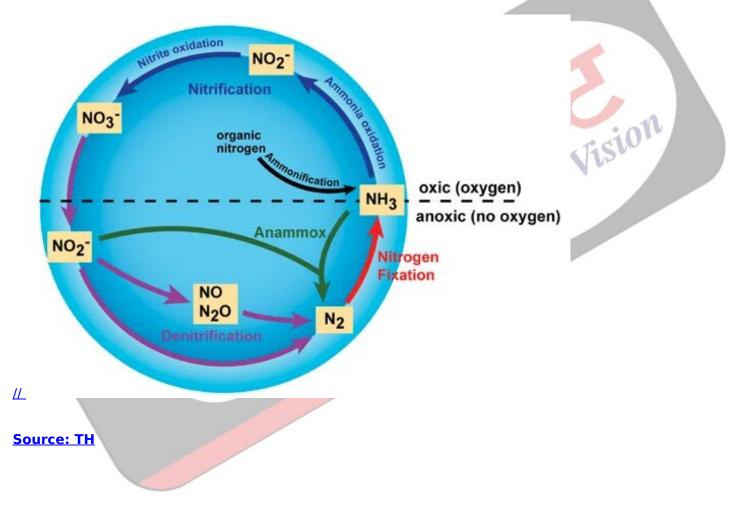
Aquaponics is an ecologically sustainable model that **combines** <u>Hydroponics</u> **with** <u>Aquaculture</u>.

Hydroponics is the soilless growing of plants, where soil is replaced with water. Aquaculture is the raising of fish.

- With Aquaponics both fish and plants can grow in one integrated ecosystem.
- The fish waste provides an organic food source for the plants, which in turn naturally filter the water for the fish, creating a balanced ecosystem.
 - The third participant i.e. **microbes or nitrifying bacteria** converts the ammonia from the fish waste into **nitrates** which plants need to grow.

Benefits and Weaknesses of Aquaponics

The **Food and Agriculture Organization of the United Nations** (FAO) put out a technical paper in 2014, detailing the positives and negatives of the practice:


- Benefits:
 - Higher yields (20-25% more) and qualitative production.
 - Can be used on non-arable land such as deserts, degraded soil or salty, sandy islands.
 - Creates little waste.
 - Daily tasks, harvesting and planting are cut down to a great extent, thereby saving labour and time.
 - Both fish and plants can be used for consumption and income generation.
- Weaknesses:
 - Expensive initial startup costs compared with soil production or hydroponics.
 - Knowledge of fish, bacteria and plant production is needed.
 - Optimal temperature ranges needed (17-34°C).
 - Mistakes or accidents can cause catastrophic collapse of system.
 - Daily management is mandatory.
 - Requires reliable access to electricity, fish seed and plant seeds.
 - If used alone, aquaponics will not provide a complete diet

Nitrogen Cycle

- Nitrogen is one of the **primary nutrients critical for the survival** of all living organisms.
- It is a necessary component of many biomolecules, including proteins, DNA, and chlorophyll.
- Although nitrogen is abundant in the atmosphere as Nitrogen gas (N₂), it is largely inaccessible in this form to most organisms, making nitrogen a scarce resource and often limiting primary productivity in many ecosystems.
- Only when nitrogen is converted from Nitrogen gas into ammonia (NH₃) it becomes available to primary producers, such as plants.
- The major transformations of nitrogen gas are through the process of:
 - Nitrogen fixation (nitrogen gas to ammonia),
 - Nitrification (ammonia to nitrite and nitrate),
 - Denitrification (nitrate to nitrogen gases)

- The process of converting Nitrogen gas (N₂) into biologically available nitrogen, that is ammonia, by nitrogen fixing microorganisms, is called nitrogen fixation.
 - Some nitrogen-fixing organisms are free-living, while others are symbiotic nitrogenfixers, which require a close association with the host to carry out the process.
 - Some of these bacteria are **aerobic**, **others are anaerobic**; some are **phototrophic**, **others are chemotrophic** (use chemicals as their energy source instead of light).
 - $\circ\,$ They all have a similar enzyme complex called **nitrogenase** that catalyzes the reduction of N_2 to NH_3 (ammonia).
- **Nitrification** is the process that converts ammonia to nitrite and then to nitrate.
 - Most nitrification occurs aerobically and there are two distinct steps of nitrification that are carried out by distinct types of microorganisms.
 - The first step is the **oxidation of ammonia to nitrite**, which is carried out by microbes known as **ammonia-oxidizers**.
 - The second step in nitrification is the oxidation of nitrite (NO₂-) to nitrate (NO₃-). This step is carried out by a completely separate group of prokaryotes (a unicellular organism), known as nitrite-oxidizing bacteria.

PDF Refernece URL: https://www.drishtiias.com/printpdf/aquaponics