

National Quantum Mission

For Prelims: National Quantum Mission, Quantum Technology

For Mains: National Quantum Mission and its role in developing Quantum Technology, Quantum Technology: Potential advantages and disadvantages.

Why in News?

Recently, the union cabinet chaired by the Prime Minister has approved the National Quantum Mission (NQM) to aid scientific and industrial research and development in quantum technology.

What is National Quantum Mission?

- About:
 - It'll be implemented by **the Department of Science & Technology (DST)** under the Ministry of Science & Technology.
 - The mission planned for 2023-2031 aims to seed, nurture, and scale up scientific and industrial R&D and create a vibrant & innovative ecosystem in Quantum Technology (OT).
 - With the launch of this mission, India will be the seventh country to have a
 dedicated quantum mission after the US, Austria, Finland, France, Canada and China.
- Salient features of NQM:
 - It will target developing intermediate scale quantum computers with 50-100 physical qubits in 5 years and 50-1000 physical qubits in 8 years.
 - Just like bits (1 and 0) are the basic units by which computers process information, 'qubits' or 'quantum bits' are the units of process by quantum computers.

lision

- The mission will help develop magnetometers with high sensitivity for precision timing (atomic clocks), communications, and navigation.
- It will also support design and synthesis of quantum materials such as superconductors, novel semiconductor structures and topological materials for fabrication of quantum devices.
- The mission will also help developing:
 - Satellite based secure quantum communications between ground stations over a range of 2000 km within India.
 - Long distance secure quantum communications with other countries
 - Inter-city quantum key distribution over 2000 km
 - Multi-node Quantum network with quantum memories
- **Four Thematic Hubs (T-Hubs)** would be set up in top academic and National R&D institutes on the domains of Quantum Technology:
 - Quantum computation
 - Quantum communication
 - Quantum Sensing & Metrology
 - Quantum Materials & Devices

Significance:

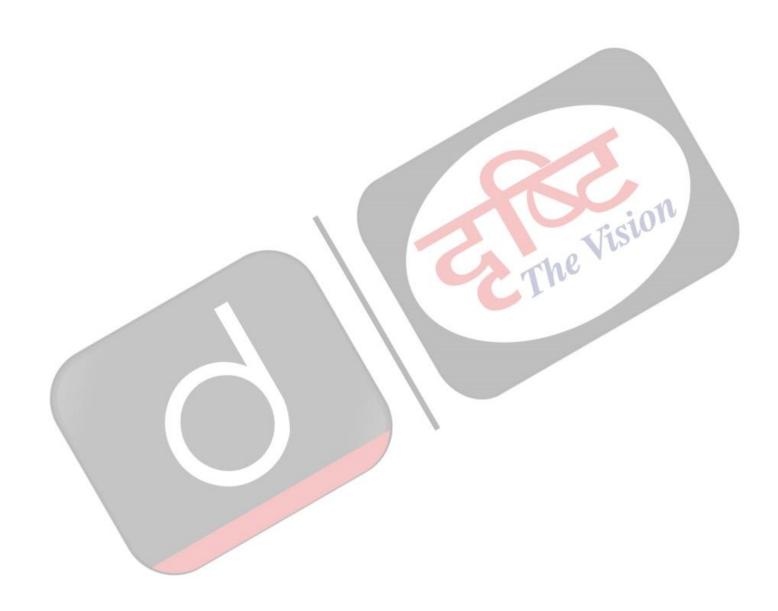
- This will accelerate QT led economic growth and make India one of the leading nations in the development of Quantum Technologies & Applications (QTA) ranging from healthcare and diagnostics, defence, energy and data security.
- It will work towards indigenously building quantum-based computers which are far more powerful and are able to solve the most complex problems in a highly secure manner.

What is Quantum Technology?

- Quantum technology is a field of science and engineering that deals with the principles of quantum mechanics, which is the study of the behaviour of matter and energy at the smallest scale.
 - Quantum mechanics is the branch of physics that describes the behavior of matter and energy at the atomic and subatomic level.

What are the Advantages of Quantum Technology?

- Increased Computing Power: Quantum computers are very much faster than the computers we today have. They also have the capability to solve complex problems that are currently beyond our reach.
- Improved Security: Because they rely on principles of quantum mechanics, quantum encryption techniques are much more secure than traditional encryption methods.
- Faster Communication: Quantum communication networks can transmit information faster and more securely than traditional networks, with the potential for completely unhackable communication.
- Enhanced AI: Quantum machine learning algorithms can potentially enable more efficient and accurate training of <u>Artificial Intelligence</u> models.
- Better Sensing and Measurement: Quantum sensors can detect extremely small changes in the environment, making them useful in areas such as medical diagnostics, environmental monitoring, and geological exploration.


What are the Disadvantages of Quantum Technology?

- **Expensive:** The technology requires specialized equipment and materials which make it more expensive than the traditional technologies.
- Limited Applications: Currently, quantum technology is only useful for specific applications such as cryptography, quantum computing, and quantum communication.
- Sensitivity to Environment: Quantum technology is highly sensitive to environmental interference, such as temperature changes, magnetic fields, and vibrations.
 - Qubits are easily disrupted by their surroundings which can cause them to lose their quantum properties and make mistakes in calculations.
- Limited Control: It is difficult to control and manipulate quantum systems. Quantum-powered Al could create unintended consequences.
 - Quantum-powered Al systems could potentially arrive at conclusions that are unexpected or difficult to explain as they operate on principles that are fundamentally different from classical computing.

Conclusion

Overall, while quantum technology has enormous potential, there are still many challenges that must be overcome before it can be widely adopted.

Source: TH

