

2D Protein Monolayer Unravels Amyloidosis

Source: PIB

Why in News?


Recently, researchers have achieved a significant breakthrough in disease study through the creation of a **two-dimensional (2D) protein monolayer** using <u>lysozyme</u> **molecules**.

What are Lysozyme and Amyloidosis?

- Lysozyme is a naturally occurring enzyme found in various bodily secretions like tears, saliva, mucus. It plays a crucial role in the body's defense system against bacteria.
 - This enzyme works by breaking down the cell walls of certain bacteria, essentially disrupting their structure and leading to their destruction.
 - It is also the principal component of airway fluid, serving as a model protein in investigating diseases like Amyloidosis, which trigger multi-organ dysfunction.
- Amyloidosis refers to a group of rare conditions characterized by the accumulation of abnormal protein clumps called amyloids in various organs and tissues throughout the body.
 - These amyloid proteins, typically made up of misfolded proteins, can disrupt normal organ function such as the heart, kidneys, liver, spleen and cause damage over time.

What are the Major Highlights of the Research?

- Scientists assembled lysozyme molecules into a 2D monolayer at the interface of a pure water subphase.
 - These meticulously arranged layers of lysozyme, positioned at different interfaces, provide an exceptional model for delving into the complexities of Amyloidosis.
 - Employing the sophisticated <u>Langmuir-Blodgett (LB) technique</u> was crucial in forming this specialized two-dimensional protein layer.
 - The Langmuir-Blodgett technique is a process used to create monolayers of molecules, including proteins, at air-water and air-solid interfaces.
- The changes observed in the structure and shape of lysozyme molecules under different pH conditions remarkably mirror the abnormalities seen in Amyloidosis.
- This groundbreaking research not only paves the way for a more profound comprehension of Amyloidosis but also establishes a versatile platform for probing disease mechanisms.
- Furthermore, it presents exciting possibilities for exploring <u>nanotechnology</u> applications within the realm of protein science.

