

सौर-आधारति वलिवणीकरण प्रौद्योगिकी

<u>स्रोत: द हिंदू</u>

चर्चा में क्यों?

विश्व भर में <mark>ताज़े जल की कमी</mark> को दूर करने के लिये, **भारतीय प्रौद्योगिकी संस्थान बॉम्बे के वैज्ञानिकों** ने **ड्यूल-साइडेड सुपरहाइड्रोफोबिक लेजर-**इंड्यूसड ग्राफीन (DSLIG) एवापोरेटर विकसित किया है, जो पिछली <mark>विलवणीकरण प्रणालियों</mark> की विभिन्न सीमाओं को दूर करता है और व्यापक पैमाने पर अनुप्रयोगों की क्षमता रखता है।

DSLIG के बारे में मुख्य तथ्य क्या हैं?

वशिषताएँ	वविरण
सौर और विद्युत तापन एकीकरण	यह सौर और जूल तापन (विद्युत) दोनों का उपयोग करता है, जिससे कि सूर्य की बदलती हुई स्थितियों के दौरान भी कुशल विलवणीकरण सुनिश्चित होता है, जिससे निर्तेतर प्रदर्शन सुनिश्चित होता है।
सुपरहाइड्रोफोबिक सतह	 एवापोरेटर की सतह कमल के पत्ते जैसा व्यवहार प्रदर्शति करती है, जो जल को पीछे हटाती है और नमक के जमाव को रोकती है, जिससे दीर्घकालकि दक्षता में वृद्ध होती है।
सामग्री की संरचना	 <u>पॉलीविनाइलिंडीन फुलोराइड (PVDF)</u> और पॉली (ईथर सल्फोन) (PES) पॉलिमर से निर्मित, PVDF हाइड्रोफोबिसिटी प्रदान करता है और PES यांत्रिक स्थिरिता सुनिश्चित करता है।

- महत्त्व: DSLIG अपने निम्न कार्बन फुटप्रिट और उच्च दक्षता के साथ एक पर्यावरणीय रूप से धारणीय विकल्प प्रदान करता है, जो इसे औद्योगिक अपशिष्ट जल और लवणीय जल के निर्वहन के उपचार के लिये उपयुक्त बनाता है।
 - ॰ यह सफलता <mark>हरति प्रौदयोगकियों</mark> को बढ़ावा देने और पर्यावरणीय प्रभाव को कम करने के **वैश्वकि प्रयासों के अनुरूप** है।

नोट

- PVDF: कठोर प्लास्टिक जो ज्वाला, विद्युत् और अधिकांश रसायनों के प्रति प्रतिरोधी है।
- PES: यह एक अनाकार, पारदर्शी, हल्के एम्बर रंग का उच्च प्रदर्शन वाला थर्मोप्लास्टिक है और व्यावसायिक रूप से उपलब्धसबसे कुशल तापमान-रोधी पारदर्शी थर्मोप्लास्टिक रेज़िन है।
- हाइड्रोफोबिसिटी: यह एक भौतिक गुण है जिसमें अणु और जल एक दूसरे को प्रतिकर्षित करते हैं, और हाइड्रोफोबिक अणुओं वाले पदार्थों को हाइड्रोफोब कहते हैं।

वलिवणीकरण क्या है?

- परिचय: विलवणीकरण समुद्री जल से, तथा कुछ मामलों में, लवणीय जल (अंतर्देशीय समुद्रों का निम्न लवणीय जल), अत्यधिक खनजियुक्त भूजल (जैसे भूतापीय लवण जल) तथा नगरपालिका अपशिष्ट जल को उसके विलयित लवणों से मुक्त करने की प्रक्रिया है।
- यह प्रक्रिया अन्यथा अनुपयोगी जल को मानव उपभोग, सिचाई, औद्योगिक अनुप्रयोगों और अन्य प्रयोजनों के लिये उपयुक्त बनाती है।

प्रक्रया:

वलिवणीकरण प्रक्रिया	मुख्य विशेषताएँ
तापीय वलिवणीकरण: जल को ऊष्मति कर भाप बना दिया जाता है, जिससे	 ऊर्जा-गहन प्रक्रिया
अशुद्धियाँ नीचे रह जाती हैं, जो फरि से द्रव के रूप में मौजूद जल में संघनति हो	 उच्च लवण युक्त जल का उपचार करने हेतु उपयुक्त
जाती हैं।	 जल को अत्यंत शुद्ध करने में सक्षम
	 औद्योगिक अनुप्रयोगों के लिये उपयुक्त
झिल्ली-आधारित विलवणीकरण: इसके अंतर्गत जल एक अर्द्धपारगम्य	■ इसकी सामान्य वधियों में <mark>उत्क्रम परासरण_(</mark> Reverse
झिल्ली से होकर गुज़रता है जो जल के अणुओं के अतरिकि्त लवण और	Osmosis) शामलि है
अन्य वलियति ठोस पदार्थों को विपाषित कर लेता है।	 तापीय वलिवणीकरण की तुलना में अधिक कुशल
, i	 झिल्ली की क्षमता और जल की लवणता द्वारा सीमित

नोट: <u>राष्ट्रीय महासागर प्रौद्योगिकी संस्थान (NIOT)</u> ने लक्षद्वीप के कवरत्ती में विश्व का **पहला निम्न तापमान थर्मल डिसेलिनेशन (LTTD)** संयंत्र विकसित किया है।

लक्षद्वीप में पाँच वलिवणीकरण संयंत्र संचालनरत हैं।

UPSC सविलि सेवा परीक्षा, वगित वर्ष के प्रश्न

प्रश्न. निम्न तापमान तापीय विलवणीकरण सिद्धांत के आधार पर प्रतिदिनि एक लाख लीटर मीठे जल का उत्पादन करने वाला भारत का पहला विलवणीकरण संयंत्र कहाँ स्थापित किया गया था? (2008)

- (a) कवरत्ती
- (b) पोर्ट ब्लेयर
- (c) मैंगलोर
- (d) वलसाड

उत्तर: (a)

PDF Refernece URL: https://www.drishtiias.com/hindi/printpdf/solar-based-desalination-technology