

सेमी क्रायोजेनकि इंजन

<u>स्रोत: इसरो</u>

भारतीय अंतरिक्ष अनुसंधान संगठन (ISRO) ने इसरो प्रणोदन परिसर (IPRC), महेन्द्रगरि में अपने सेमी क्रायोजेनिक इंजन का अल्पकालिक तापीय परीक्षण (हॉट फायर टेस्ट) सफलतापूर्वक किया।

- अल्पकालिक तापीय परीक्षण में इंजन को वास्तविक ईंधन के साथ संक्षिप्त रूप से प्रज्वलित किया जाता है ताकि वास्तविक संचालन स्थितियों में उसके प्रज्वलन और प्रदर्शन की पुष्टि की जा सके। यह परीक्षण मार्च 2025 में किये गए पहले सफल गर्म परीक्षण के बाद दूसरा महत्त्वपूर्ण चरण है।
- सेमी क्रायोजनिक इंजन: यह एक तरल रॉकेट इंजन होता है जो ऑक्सीडाइज़र के रूप में तरल ऑक्सीजन (LOX) और ईंधन के रूप में परिष्कृत केरोसीन (RP-1) का उपयोग करता है।
 - भविष्य के हेवी-लिफ्ट प्रक्षेपण यानों के बूस्टर चरणों को शक्ति प्रदान करने के लिये डिज़ाइन किया गया सेमी-क्रायोजेनिक इंजन, LOX-केरोसीन संयोजन के माध्यम से क्रायोजेनिक प्रणालियों की तुलना में उच्च घनत्व आवेग प्रदान करता है, जिससे प्रणोदन क्षमता में वृद्धि होती है।
 - ॰ इसके अतरिकि्त, केरोसीन तरल हाइड्रोजन की तुलना में सस्ता औ<mark>र रख-रखाव में आसान हो</mark>ता है, जिससे लागत कम होती है और संचालन सरल हो जाता है।
 - ॰ इस सेमी क्रायोजेनिक इंजन के सफल विकास से इसरो की पेलोड क्षमता में वृद्धि होगी औ<u>र यहनेक्स्ट जेनरेशन लॉन्च व</u>हीकल (NGLV) जैसे भविषय के प्रक्षेपण यानों का समर्थन करेगा।
- NGLV: एक लागत-कुशल, पुन: प्रयोज्य हेवी-लिफ्ट रॉकेट है जिसे इसरो द्वारा विकसित किया जा रहा है। यह लो अर्थ ऑर्बिट (Low Earth Orbit) में 30 टन तक भार ले जाने में सक्षम होगा, जिसमें पहला चरण पुनः उपयोग योग्य होगा।
 - ॰ इसका विन्यास तीन चरणों में विभाजित है, जिसमें **प्रारंभिक दो चरणों में तरल ऑक्सीजन (LOX) आधारित इंजन** प्रयुक्त होते हैं, जबकि **अंतिम चरण में एक क्रायोजेनिक इंजन** प्रयुक्त होता है।
 - NGLV का उद्देश्य संचार उपग्रह प्रक्षेपण, गहन अंतरिक्ष मिशन और भविष्य के मानव अंतरिक्ष उड़ान और कार्गो मिशनों को समर्थन प्रदान करना है।

Cryogenic vs Semi-Cryogenic Engines: Key Differences

Feature	Cryogenic Engine	Semi-Cryogenic Engine
Fuel	Liquid Hydrogen (LH ₂) + Liquid Oxygen (LOX)	Refined Kerosene (RP-1) + Liquid Oxygen (LOX)
Fuel Temperature	LH₂ at −253°C, LOX −183°C	–183°C, Kerosene stored at ambient temperature
Complexity	High (due to handling ultra-cold LH ₂ , insulation challgengs)	Lower (kerosene is stable at room temperature)
Cost	Expensive (LH ₂ production/storage costs, complex infrast-	Cheaper (kerosene is cost–effective, simpler logistics)
Thrust	Lower thrust but higher specific impulse (efficiency in vacuum)	Higher thrust (ideal for heavy-lift boosters)
Advantages	– High efficiency (specific impulse -450 sec) – Clean exhaust (water vapor)	- Higher thrust-to-weight ratio – Higher density impulse (more fuel storage) – Cost–effective

और पढ़ें: 3D प्रटिंड क्रायोजेनिक इंजन और अंतरिक्ष क्षेत्र का निजीकरण, NISAR उपग्रह।

PDF Refernece URL: https://www.drishtiias.com/hindi/printpdf/semi-cryogenic-engine